31 research outputs found

    Selectron Pair Production at e-e- and e+e- Colliders with Polarized Beams

    Get PDF
    We investigate selectron pair production and decay in e-e- scattering and e+e- annihilation with polarized beams taking into account neutralino mixing as well as ISR and beamstrahlung corrections. One of the main advantages of having both modes at disposal is their complementarity concerning the threshold behaviour of selectron pair production. In e-e- the cross sections at threshold for seleectron_R selectron_R and selectron_L selectron_L rise proportional to the momentum of the selectron and in e+ e- that for selectron_R selectron_L. Measurements at threshold with polarized beams can be used to determine the selectron masses precisely. Moreover we discuss how polarized electron and positron beams can be used to establish directly the weak quantum numbers of the selectrons. We also use selectron pair production to determine the gaugino mass parameter M_1. This is of particular interest for scenarios with non-universal gaugino masses at a high scale resulting in |M_1| << |M_2| at the electroweak scale. Moreover, we consider also the case of a non-vanishing selectron mixing and demonstrate that it leads to a significant change in the phenomenology of selectrons.Comment: LaTex, 23 pages, 14 figures, v2, typos corrected, version to appear in Eur.Phys.J.

    CP violation through particle mixing and the H-A lineshape

    Get PDF
    We consider the possibility of looking for CP-mixing effects in two-Higgs doublet models (and particularly in the MSSM) by studying the lineshape of the CP-even (H) and CP-odd (A) neutral scalars. In most cases H and A come quite degenerate in mass, and their s-channel production would lead to nearly overlapping resonances. CP-violating effects may connect these two Higgs bosons, giving origin to one-loop particle mixing, which, due to their mass proximity, can be resonantly enhanced. The corresponding transition amplitude contains then CP-even and CP-odd components; besides the signal of intereference between both amplitudes, leading to a CP-odd asymmetry, we propose to look for the mixing probability itself, a quantity which, although CP-even, can originate only from a CP-odd amplitude. We show that, in general, the effect of such a mixing probability cannot be mimicked by (or be re-absorbed into) a simple redefinition of the H and A masses in the context of a CP-conserving model. Specifically, the effects of the CP-mixing are such that, either the mass-splitting of the H and A bosons cannot be accounted for in the absence of CP-mixing, and/or the detailed energy dependence of the produced lineshape is clearly different from the one obtained by redefining the masses, but not allowing any mixing. This analysis suggests that the detailed study of the lineshape of this Higgs system may provide valuable information on the CP nature of the underlying theory.Comment: 16 pages, 13 figures; v2: added one reference; v3: radiative corrections taken into account, agreement now with CP-SuperH, conclusions unchanged. v3 matches the paper version accepted for publication in JHE

    Refining the predictions of supersymmetric CP-violating models: A top-down approach

    Full text link
    We explore in detail the consequences of the CP-violating phases residing in the supersymmetric and soft SUSY breaking parameters in the approximation that family flavour mixings are ignored. We allow for non-universal boundary conditions and in such a consideration the model is described by twelve independent CP-violating phases and one angle which misaligns the vacuum expectation values (VEVs) of the Higgs scalars. We run two-loop renormalization group equations (RGEs), for all parameters involved, including phases, and we properly treat the minimization conditions using the one-loop effective potential with CP-violating phases included. We show that the two-loop running of phases may induce sizable effects for the electric dipole moments (EDMs) that are absent in the one-loop RGE analysis. Also important corrections to the EDMs are induced by the Higgs VEVs misalignment angle which are sizable in the large tanb region. Scanning the available parameter space we seek regions compatible with accelerator and cosmological data with emphasis on rapid neutralino annihilations through a Higgs resonance. It is shown that large CP-violating phases, as required in Baryogenesis scenarios, can be tuned to obtain agreement with WMAP3 cold dark matter constraints, EDMs and all available accelerator data, in extended regions of the parameter space which may be accessible to LHC.Comment: 41 pages, 22 eps figures. A reference added and a typo corrected; version to appear in JHE

    Probing neutrino properties with charged scalar lepton decays

    Get PDF
    Supersymmetry with bilinear R-parity violation provides a predictive framework for neutrino masses and mixings in agreement with current neutrino oscillation data. The model leads to striking signals at future colliders through the R-parity violating decays of the lightest supersymmetric particle. Here we study charged scalar lepton decays and demonstrate that if the scalar tau is the LSP (i) it will decay within the detector, despite the smallness of the neutrino masses, (ii) the relative ratio of branching ratios Br({tilde tau}_1 --> e sum nu_i)/ Br({tilde tau}_1 --> mu sum nu_i) is predicted from the measured solar neutrino angle, and (iii) scalar muon and scalar electron decays will allow to test the consistency of the model. Thus, bilinear R-parity breaking SUSY will be testable at future colliders also in the case where the LSP is not the neutralino.Comment: 24 pages, 8 ps figs Report-no.: IFIC/02-33 and ZU-TH 11/0

    TESLA Technical Design Report Part III: Physics at an e+e- Linear Collider

    Full text link
    The TESLA Technical Design Report Part III: Physics at an e+e- Linear ColliderComment: 192 pages, 131 figures. Some figures have reduced quality. Full quality figures can be obtained from http://tesla.desy.de/tdr. Editors - R.-D. Heuer, D.J. Miller, F. Richard, P.M. Zerwa

    Linear Collider Physics Resource Book for Snowmass 2001, 3: Studies of Exotic and Standard Model Physics

    Get PDF
    This Resource Book reviews the physics opportunities of a next-generation e+e- linear collider and discusses options for the experimental program. Part 3 reviews the possible experiments on that can be done at a linear collider on strongly coupled electroweak symmetry breaking, exotic particles, and extra dimensions, and on the top quark, QCD, and two-photon physics. It also discusses the improved precision electroweak measurements that this collider will make available.This Resource Book reviews the physics opportunities of a next-generation e+e- linear collider and discusses options for the experimental program. Part 3 reviews the possible experiments on that can be done at a linear collider on strongly coupled electroweak symmetry breaking, exotic particles, and extra dimensions, and on the top quark, QCD, and two-photon physics. It also discusses the improved precision electroweak measurements that this collider will make available

    A distribution method for solving SAT in grids

    No full text
    Abstract. The emerging large-scale computational grid infrastructure is providing an interesting platform for massive distributed computations. In this paper the problem of exploiting such computational grids for solving challenging propositional satisfiability problem (SAT) instances is studied. When designing a distributed algorithm for a large loosely coupled computational grid, a number of grid specific problems need to be tackled including the heterogeneity of the resources, inherent communication delays, and high failure probabilities of grid jobs. In this work a novel distribution method for solving SAT problem instances, called scattering, is introduced. The key advantages of scattering are that it can be used in conjunction with any sequential SAT solver (including industrial black box solvers), the distribution heuristic is strictly separated from the heuristic used in sequential solving, and it requires no communication between processes solving subproblems but still allows coordination of such processes. An implementation of the method has been developed for NorduGrid, a large widely distributed production-level grid running in Scandinavia. The implementation has been benchmarked with test cases including random 3SAT and challenging industrial benchmarks used in previous SAT competitions.
    corecore